Step of Proof: choicef_wf
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
choicef
wf
:
1.
xm
:
P
:
.
P
(
P
)
2.
T
: Type
3.
P
:
T
4.
a
:
T
.
P
(
a
)
5.
z
: {
y
:
T
|
P
(
y
)}
(
{
y
:
T
|
P
(
y
)} )
6.
xm
({
y
:
T
|
P
(
y
)} ) =
z
case
z
of inl(
z
) =>
z
| inr(
w
) => "???"
T
latex
by ((((D 5)
CollapseTHEN (Reduce 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
5.
y
:
{
y
:
T
|
P
(
y
)}
C1:
6.
xm
({
y
:
T
|
P
(
y
)} ) = (inr
y
)
C1:
"???"
T
C
.
Definitions
t
T
,
P
Q
origin